Converting between Coordinate Systems
Dot product of Cartesian and Spherical Coordinates
| ρ | ϕ | z |
---|
x | cos(ϕ) | −sin(ϕ) | 0 |
y | sin(ϕ) | cos(ϕ) | 0 |
z | 0 | 0 | 1 |
Dot product of cylindrical and Spherical Coordinates
| r | θ | ϕ |
---|
x | sinθcosϕ | cosθcosϕ | −sinϕ |
y | sinθsinϕ | cosθsinϕ | cosϕ |
z | cosθ | −sinθ | 0 |
Dot product of spherical and cylindrical coordinates
| ρ | ϕ | z |
---|
r | sinθ | 0 | cosθ |
θ | cosθ | 0 | −sinθ |
ϕ | 0 | 1 | 0 |
Conversion
Rectangular to Cylindrical
ρ=x2+y2
ϕ=tan−1(xy)
z=z
Cylindrical to Rectangular
x=ρcosϕ
y=ρsinϕ
z=z
Rectangular to Spherical
r=x2+y2+z2
ϕ=tan−1(xy)
θ=cos−1(x2+y2+z2z)
Spherical to Rectangular
x=rsinθcosϕ
y=rsinθsinϕ
z=rcosθ
Cylindrical to Spherical
r=ρ2+z2
ϕ=ϕ
θ=cos−1(rz)=cos−1(ρ2+z2z)
Spherical to Cylindrical
ϕ=ϕ
ρ=rsinθ
z=rcosθ